General Comprehensive Examination
 Linear Algebra

Print Name: \qquad Sign: \qquad

Problem 1: Let f_{1}, \ldots, f_{n} be real-valued continuous functions on the real interval $[a, b]$. For $1 \leq i, j \leq n$, let

$$
g_{i j}=\int_{a}^{b} f_{i}(x) f_{j}(x) d x
$$

Prove: if the matrix $G=\left[g_{i j}\right]_{i, j}$ is singular, then the functions f_{1}, \ldots, f_{n} are linearly dependent.

Problem 2: Prove that the eigenvalues of a self-adjoint (viz. Hermitian) matrix with complex entries are real.

Problem 3: Let $P_{2}(\mathbb{R})$ denote the vector space of all polynomials of degree at most two with real coefficients. Find $q(x) \in P_{2}(\mathbb{R})$ such that, for all $p(x) \in P_{2}(\mathbb{R})$,

$$
p\left(\frac{1}{2}\right)=\int_{0}^{1} p(x) q(x) d x .
$$

Problem 4: Let V be the real vector space spanned by

$$
\{1, \cos x, \cos 2 x, \ldots, \cos n x, \sin x, \sin 2 x, \ldots, \sin n x\}
$$

with the scalar product

$$
(f, g)=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

Let D be the differential operator, viz. $D f=f^{\prime}$.
(i) Prove D is not self-adjoint.
(ii) Prove that the operator T defined by $T f=f^{\prime \prime}$ is self-adjoint.
(iii) Prove that $-T$ is positive.

Problem 5: Let $M \in \mathrm{GL}_{n}(\mathbb{C})$ be a nilpotent matrix; that is, assume that there exists an integer k such that $M^{k}=0$.
(i) Prove that every eigenvalue of M is 0 ;
(ii) Hence prove that $k \leq n$;
(iii) Prove that $M+I$ is invertible, and find an expression for the inverse as a polynomial in I and M.

